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Dipartimento di Fisica, Università degli Studi di Milano-Bicocca and

INFN, Sezione di Milano-Bicocca,

piazza della Scienza 3, I 20126 Milano, Italy

E-mail: antonio.amariti@unimib.it, luciano.girardello@mib.infn.it,

alberto.mariotti@mib.infn.it

Abstract: We study metastable dynamical breaking of supersymmetry in An quiver

gauge theories. We present a general analysis and criteria for the perturbative existence of

metastable vacua in quivers of any length. Different mechanisms of gauge mediation can

be realized.

Keywords: Supersymmetry Breaking, Supersymmetry and Duality, Supersymmetry

Phenomenology.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep102007017/jhep102007017.pdf

mailto:antonio.amariti@unimib.it
mailto:luciano.girardello@mib.infn.it
mailto:alberto.mariotti@mib.infn.it
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
1
0
(
2
0
0
7
)
0
1
7

Contents

1. Introduction 1

2. An quiver gauge theories with massive adjoint fields 2

3. Seiberg duality on the even nodes 3

4. Metastable vacua in A3 quivers 5

5. Renormalization group flow 8

6. Meta-stable An 10

6.1 Example 12

7. Gauge mediation 13

8. Conclusions 14

A. Goldstone bosons 15

B. Hierarchy of scales 16

C. A5 classification 18

1. Introduction

The existence of long living metastable vacua [1, 2] seems by now a rather generic phe-

nomenon in large classes of supersymmetric gauge theories [3 – 5]. It provides an attractive

way for dynamical breaking of supersymmetry and the interest in these theories has been

enhanced by the possibilities of their embedding in supergravity and string theory [6] and

of their use [7 – 10] in gauge mediation mechanisms [11].

Metastability is a low energy phenomenon for UV free theories and in general the

key ingredient which makes a perturbative analysis possible is Seiberg duality to IR free

theories described in terms of macroscopic fields [12].

An interesting set of theories in which to study metastability à la ISS [1] is the ADE

class of quiver gauge theories [13, 14].

These theories can be derived in type IIB string theory from D5-branes partially

wrapping 2-cycles of non compact Calabi-Yau threefolds. These manifolds are ADE-fold

geometries fibered over a plane, and the 2-cycles are blown up S2
i in one to one correspon-

dence with the simple roots of ADE.
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In this paper we investigate metastability in An N = 2 (non affine) quiver gauge

theories deformed to N = 1 by superpotential terms in the adjoint fields. In the presence

of many gauge groups we have, in principle, a large number of dualization choices.

In [3, 8, 9] A2, A3, A4 quivers have been studied dualizing only one node in the quiver,

where dynamical supersymmetry breaking occurs.

Here we consider An theories with arbitrary n, where several Seiberg dualities take

place. In particular we will explore theories obtained by dualizing alternate nodes. This

leads to a low energy description in terms of only magnetic fields.

In the duality process the dualized groups are treated as genuine gauge groups whereas

the other ones have to be weakly coupled at low energy, so that they act as flavour groups

i.e. global symmetries. The procedure depends on the interplay of the RG flows of the

dualized and of the non dualized gauge groups and is governed by the associated beta-

functions. This translates into inequalities among the ranks of the gauge groups and in

hierarchies among the strong coupling scales.

The paper is organized as follows. In section 2 we describe the N = 2 quiver gauge

theories, explicitly broken to N = 1 by superpotential terms. After the integration of

the massive adjoint fields, we give the general form of the superpotential. In section 3

we investigate Seiberg duality on the alternate nodes of the quiver. The general theory

obtained with this procedure on an An is expressed in terms of only magnetic fields. In

section 4 we consider the simplest case, i.e. A3 quiver, showing that it possesses long living

metastable vacua à la ISS. The analysis is done neglecting the gauge contributions of the

odd nodes, which are treated as flavour symmetries. This last approximation is justified in

section 5, where an analysis of the running of the couplings has been performed. The general

result, metastability in an An quiver theory, is explained in section 6, giving an explicit

example. In section 7 we comment on the possible ways of enforcing gauge mediation of

supersymmetry breaking. Appendix A explains how to find the metastable vacua upon

changing the masses of the quarks in the electric description. Appendix B provides details

in the analysis on the running of the gauge couplings of section 5. Appendix C adds to

section 6, giving all the possible choices of A5 which show metastable vacua.

2. An quiver gauge theories with massive adjoint fields

We consider a N = 2 (non affine) An quiver gauge theory, deformed to N = 1 by superpo-

tential terms in the adjoint fields. The theory is associated with a Dynkin diagram where

each node is a U(Ni) gauge group (figure 1).

The arrows connecting two nodes represent fields Qi,i+1, Qi+1,i in the fundamental of

the incoming node and anti fundamental of the out-coming node. The adjoint fields Xi

refer to the i-th gauge group.

The gauge group of the whole theory is the product
∏n

i=1 U(Ni). We call Λi the strong

coupling scale of each gauge group.
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Figure 1: An quiver.

The N = 1 superpotential is

W =
n∑

i=1

Wi(Xi) +
∑

i,j

si,j(Qi,j)
β
α(Xj)

γ
β(Qj,i)

α
γ (2.1)

where si,j is an antisymmetric matrix, with |si,j| = 1. The Latin labels run on the different

nodes of the An quivers, the Greek labels runs on the ranks of the groups of each site. In

the case of An theories the only non zero terms are si,i+1 and si,i−1. The superpotentials

for the adjoint fields Wi(Xi) break supersymmetry to N = 1.

We choose these superpotentials to be

Wi(Xi) = λiTrXi +
mi

2
TrX2

i (2.2)

As a consequence the adjoint fields are all massive. We consider the limit where the adjoint

fields are so heavy that they can be integrated out, and we study the theory below the

scale of their masses.

Integrating out these fields we obtain the effective superpotential describing the An

theory (traces on the gauge groups are always implied).

W =

n−1∑

i=1

((
λi+1

mi+1
−

λi

mi

)
Qi,i+1Qi+1,i −

1

2

(
1

mi
+

1

mi+1

)
(Qi,i+1Qi+1,i)

2

)

+

n−1∑

i=2

1

mi
Qi−1,iQi,i+1Qi+1,iQi,i−1 (2.3)

A final important remark is that for the An theories the D-term equations of motion

can be decoupled and simultaneously diagonalized [15].

3. Seiberg duality on the even nodes

We investigate the low energy dynamics of the gauge groups of the Dynkin diagram, gov-

erned by the ranks and by the hierarchy between the strong coupling scales of each node.

We work in the regime where the even nodes develop strong dynamics and have to be

Seiberg dualized.
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U(N2i−1) U(Ñ2i) U(N2i+1)

M2i+1,2i−1 N2i−1 1 N̄2i+1

M2i+1,2i+1 1 1 Bifund.

M2i−1,2i−1 Bifund. 1 1

M2i−1,2i+1 N̄2i−1 1 N2i+1

q2i−1,2i N2i−1 Ñ2i
1

q2i,2i−1 N̄2i−1 Ñ2i 1

q2i,2i+1 1 Ñ2i N̄2i+1

q2i+1,2i 1 Ñ2i
N2i+1

Table 1: Fields in the magnetic description.

We set all the strong coupling scales of the even nodes to be equal Λ2i ≡ ΛG and we

require the odd nodes to be less coupled at this scale. We impose the following window for

the ranks of the nodes

N2i + 1 ≤ N2i−1 + N2i+1 <
3

2
N2i i = 1, . . . ,

n − 1

2
(3.1)

We take n odd, the even case can be included setting to zero one of the ranks of the

extremal nodes.

Along the flow toward the IR, we have to change the description at the scale ΛG

performing Seiberg duality on the even nodes. The even nodes are treated as gauge groups,

whereas the odd nodes are treated as flavours. We will discuss the consistency of this

description in section 5.

It is convenient to list the elementary fields of the dualized theory, i.e. the electric

gauge singlets and the new magnetic quarks (table 1).

The mesons are proportional to the original electric variables: M2i+k,2i+j ∼

Q2i+k,2iQ2i,2i+j . The even magnetic groups have ranks Ñ2i = N2i+1 + N2i−1 − N2i. The

superpotential in the new magnetic variables results

W = hM
(2i)
2i+k,2i+jq2i+j,2iq2i,2i+k + hµ2

2i+k,(2i)M
(2i)
2i+k,2i+k + (3.2)

+hmM
(2i)
2i+1,2i+1M

(2i+2)
2i+1,2i+1 + hm

(
M

(2i)
2i+k,2i+k

)2
+ hmM

(2i)
2i−1,2i+1M

(2i)
2i+1,2i−1

where the index i runs from 1 to n−1
2 , and k and j are +1 or −1. The upper index (2i) of the

mesons indicates which site the meson refers to: it is necessary because some mesons have

the same flavor indexes, but they are summed on different gauge groups, so they have to

be labeled differently. We denote with hmi the meson masses, related to the quartic terms

in the electric superpotential, and with hµ2
i the coefficients of the linear deformations,

corresponding to the masses of the quarks in the electric description. In (3.2) we wrote a

single coupling hm, for all the different mesons, considering all their masses of the same

order.
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Figure 2: A5 dual quiver.

The b coefficients of the beta functions before dualization are

bi = 3Ni − Ni−1 − Ni+1 i = 1, . . . , n (3.3)

where N0 = Nr+1 = 0. After the dualization the coefficients b̃ for the beta functions in the

internal nodes result

b̃2k = 2N2k+1 + 2N2k−1 − 3N2k (3.4)

b̃2k+1 = N2k + N2k+2 − N2k+1 − 2N2k−1 − 2N2k+3 (3.5)

where k runs from 1 to n−1
2 , and Nn+1 = Nn+2 = 0. For the external nodes we have

b̃1 = N1 + N2 − 2N3 b̃n = Nn + Nn−1 − 2Nn−2 (3.6)

To visualize the resulting magnetic theory (3.2) we exhibit below the content of the

magnetic dual theory for an A5 quiver (see figure 2), which encodes the relevant features.

The superpotential is

W = h
(
M11q12q21 + M13q32q21 + M31q12q23 + M

(2)
33 q32q23

)
+

+h
(
M

(4)
33 q34q43 + M35q54q43 + M53q34q45 + M55q54q45

)
+

+hm

(
M2

11 + M13M31 + M
(2)
33

2
+ M

(2)
33 M

(4)
33 + M

(4)
33

2
+ M35M53 + M2

55

)
+

+h
(
µ2

1M11 + µ2
3,(2)M

(2)
33 + µ2

3,(4)M
(4)
33 + µ2

5M55

)
(3.7)

4. Metastable vacua in A3 quivers

We start studying the existence and the slow decay of non supersymmetric meta-stable

vacua in A3 quiver gauge theory, the simplest example of an An theory. The A3 gauge

group is U(N1) × U(N2) × U(N3). As already mentioned in section 2 for a An theory, we

integrate out the adjoint fields and we perform Seiberg duality on the central node under

the constraint

N2 + 1 ≤ N1 + N3 <
3

2
N2 (4.1)
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The superpotential reads

W = h (M1,1q1,2q2,1 + M1,3q3,2q2,1 + M3,1q1,2q2,3 + M3,3q3,2q2,3) +

+hµ2
1M1,1 + hµ2

3M3,3 (4.2)

where all the mass terms for the mesons have been neglected. Turning on these terms does

not ruin the metastability analysis at least for very small masses compared to the super-

symmetry breaking scale. Such deformations slightly shift the value of the pseudomoduli

in the non supersymmetric minimum, breaking R-symmetry [10]. We neglect them in the

following.

The central node yields the magnetic gauge group U(N1 + N3 − N2) whereas the

groups at the two external nodes are considered as flavour groups, much less coupled. We

discuss in section 5 the consistency of this assumption. Since the gauge group is IR free

in the low energy description, and the flavours are less coupled, we are allowed to neglect

Kahler corrections and take it as canonical [1]. Moreover the D-term corrections to the one

loop effective potential due to the flavour nodes are negligible with respect to the F -term

corrections.

Now, there are two different choices of ranks for the A3 theories, which can give meta-

stable vacua: the first possibility is that N1 < N2 ≤ N3, the second one is N1 < N2 > N3.

We study separately the two cases which show meta-stable vacua in a similar manner.

N1 < N2 ≤ N3. We analyze here the case N1 < N2 < N3; the equal ranks limit

can be easily included. After the dualization the ranks obey the following inequalities

N1 < Ñ2 = N1 + N3 − N2 < N3.

We work in the regime where |µ1| > |µ3|, and we comment on what happens in the

opposite limit in the appendix A, where we shall discuss dangerous tachyonic directions in

the quark fields.

We find that the following vacuum is a non supersymmetric tree level minimum

q1,2 = q2,1 = µ1 (1N1
0) q2,3 = q3,2 =

(
0 µ31 eN2−N1

0 0

)

M1,1 = 0 M1,3 = M3,1 = 0 M3,3 =

(
0 0

0 X

)
(4.3)

where the field X is the pseudomodulus, which is a massless field not associated with

any broken global symmetries. This flat direction has to be stabilized by the one loop

corrections. Westart the one loop analysis by rearranging the fields and expanding around

the vevs

q =

(
q1,2

q3,2

)
=




µ1 + Σ1 Σ2

Σ3 µ3 + Σ4

Φ1 Φ2


 q̃ =

(
q2,1 q2,3

)
=

(
µ1 + Σ5 Σ6 Φ3

Σ7 µ3 + Σ8 Φ4

)

M =

(
M1,1 M1,3

M3,1 M3,3

)
=




Σ9 Σ10 Φ5

Σ11 Σ13 Φ6

Φ7 Φ8 X + Σ


 (4.4)
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We now compute the superpotential at the second order in the fluctuations. We find

that the non supersymmetric sector is a set of decoupled O’Raifeartaigh like models with

superpotential

W = hµ2
3X + hX(Φ1Φ3 + Φ2Φ4) + hµ3(Φ1Φ5 + Φ2Φ6) + hµ1(Φ3Φ7 + Φ4Φ8) (4.5)

In this way all the pseudomoduli can get a mass. The quantum corrections behave exactly

as in [1], which means that the pseudomoduli get positive squared mass around the origin

of the field space.

The choice (4.3) guarantees that there are no tachyonic directions and have to be

made coherently with the hierarchy of the couplings µi; see the appendix A for details.

The lifetime of the non supersymmetric vacuum is related to the value of the scalar

potential in the minimum, and to the displacement of the vevs of the fields between the

false and the true vacuum. The scalar potential in the non supersymmetric minimum is

Vmin = (N3 + N1 − Ñ2)|hµ2
3|

2 = N2|hµ2
3|

2 (4.6)

The vevs of the fields in the supersymmetric vacuum have to be studied considering

the non perturbative contributions arising from gaugino condensation. When we take into

account these non perturbative effects, we expect that the mesons get large vevs and this

allows us to integrate out the quarks using their equation of motion, qi,j = 0. In the

supersymmetric vacua also M1,3 = 0 and M3,1 = 0. If we define

M =

(
M1,1 0

0 M3,3

)
(4.7)

the effective superpotential is

W = (N1 + N3 −N2)
(
det(hM)Λ2N1+2N3−3N2

2i

) 1

N1+N3−N2 − h
(
µ2

1trM1,1 + µ2
3trM3,3

)
(4.8)

We have now to solve the equation of motion for M1 and M3. The equations to be solved

are
(
hMM

(N2−N3)
1,1 MN3

3,3 Λ
(2N1+2N3−3N2)
2i

) 1

N1+N3−N2 − µ2
1 = 0

(
hN2MN1

1,1 M
(N2−N1)
3,3 Λ

(2N1+2N3−3N2)
2i

) 1

N1+N3−N2 − µ2
3 = 0 (4.9)

The vevs of the mesons follow solving (4.9)

〈hM1,1〉 = µ
2

N1−N2
N2

1 µ
2

N3
N2

3 Λ
3N2−2N3−2N1

N2

2i 1N1
〈hM3,3〉 = µ

2
N1
N2

1 µ
2

N3−N2
N2

3 Λ
3N2−2N3−2N1

N2

2i 1N3

(4.10)

Since |µ1| > |µ3|, it follows that 〈hM3,3〉 > 〈hM1,1〉. This implies that in the evaluation of

the bounce action, with the triangular barrier [16], we can consider only the displacement

of M3 in the field space. We obtain for the bounce action

S ∼
(∆Φ)4

∆V
=

(
µ1

µ3

) 3N2−2N3
N2

(
Λ2i

µ1

)4
3N2−2N3−2N1

N2

(4.11)
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Both exponents are positive in the range (4.1). This implies that SB ≫ 1, and the vacuum

is long living.

N1 < N2 > N3. The ranks of the groups after the duality obey the relation N1 > Ñ2 =

N1 + N3 − N2 < N3. We choose now |µ1| > |µ3|, but we show in the appendix A that also

the other choice is possible, leading to other vacua. In the meta-stable vacuum all the vevs

of the fields have to be chosen to be zero except a block of the quarks q1,2 and q2,1 and the

pseudomoduli. The vevs are

q1,2 = µ1

(
1N1

0

)
qT
2,1 = µ1

(
1N1

0

)
(4.12)

The pseudomoduli come out from the meson M3,3 and a (Ñ2 − N1) × (Ñ2 − N1) diagonal

block of the other meson, M1,1. The one loop analysis is the same as before and lifts all

the flat directions.

In order to estimate the lifetime we need the vevs of the fields in the supersymmetric

vacuum, which are again (4.10), and the value of the scalar potential in the non supersym-

metric vacuum (4.12)

Vmin = (N2 − N3)|hµ1|
2 + N3|hµ3|

2 (4.13)

Since |µ1| > |µ3| we approximate the scalar potential by the term ∼ |µ1|
2 and the field

displacement by 〈hM3〉, obtaining as bounce action

S ∼

(
µ1

µ3

)2
N2−N3

N2

(
Λ2i

µ1

)4
3N2−2N1−2N3

N2

≫ 1 (4.14)

5. Renormalization group flow

The analysis of sections 3 and 4 relies on the fact that we neglect the contributions to the

dynamics due to the odd nodes. It means that these groups have to be treated as flavours

groups, i.e. global symmetries. However, in the An quiver theory each node represents a

gauge group factor and we have to analyze how its coupling runs with the energy.

The magnetic window (3.1) constraints the even nodes to be UV free in the high energy

description, i.e. b2i > 0. The odd groups are not uniquely determined by (3.1) and can be

both UV free or IR free in the electric description. In the first case we will choose their

scale Λ2i+1 to be much lower than the even one

Λ2i+1 ≪ Λ2i. (5.1)

In the second case, when b2i+1 < 0, Λ2i+1 is a Landau pole and we take

Λ2i+1 ≫ Λ2i. (5.2)

In these regimes the even nodes become strongly coupled before the odd ones in the flow

toward the infrared. This means that we need a new description provided by Seiberg

dualities on the even nodes.

– 8 –
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In order to trust the perturbative description at low energy, we have to impose that at

the supersymmetry breaking scale (typically µi) the odd nodes (flavour), are less coupled

than the even ones (gauge), which are always IR free. This requirement will give other

constraints on the scales.

As already said there are two possible behaviors of the flavour groups above the scale

Λ2i: they can be IR free or UV free. For both cases there are three different possibilities

about the beta coefficients in the low energy description.

We start discussing the case when the flavours group are UV free in the electric de-

scription. The following three possibilities arise for each flavour group U(N2k+1) in the

dual theory (Plots 1,2,3 in figure 3).

1. The first one is characterized by

b2k+1 > 0 b̃2k+1 < b̃2i < 0 (5.3)

In this case the flavour groups U(N2k+1) are more IR free than the even nodes after

Seiberg duality. The couplings of the flavour groups become more and more smaller

than the couplings of the gauge groups along the flow toward low energy. Hence we

do not need other constraints on the scales except (5.1).

2. The second possibility is reported in Plot 2 in figure 3

b2k+1 > 0 b̃2i < b̃2k+1 < 0 (5.4)

The flavour groups U(N2k+1) are IR free in the dual theory, but less than the U(Ñ2i)

gauge groups (5.4). Below a certain energy scale the flavours become more coupled

than the gauge groups. If this happens before the supersymmetry breaking scale we

cannot trust our description anymore. To solve this problem we have to choose the

correct hierarchy between the electric scales of the flavour and the gauge groups, and

the supersymmetry breaking scale. We impose that the couplings of the flavours are

smaller than the couplings of the gauge groups at the breaking scale, in the magnetic

description. This condition can be rewritten in terms of electric scales only using the

matching between the magnetic and the electric scales of the flavours. This procedure

is explained in the appendix B and gives the following condition on Λ2k+1

Λ2k+1 ≪

(
µ

Λ2i

)eb2k+1−
eb2i

b2k+1

Λ2i ≪ Λ2i (5.5)

This imposes a constraint stronger than (5.1) on the strong coupling scale of the

flavours.

3. The third possibility (Plot 3 figure 3) is

b2k+1 > 0 b̃2k+1 > 0 (5.6)

In this case the flavour group U(N2k+1) is asymptotically free in the low energy

description. Once again we have to impose that at the breaking scale the flavours

– 9 –
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are less coupled than the gauge groups. The procedure is the same outlined above,

and the condition is the same as (5.5). This case may become problematic in the far

infrared. Indeed, since the flavour group is UV free, it develops strong dynamics at

low energy. If we take into account the non perturbative contributions they could

restore supersymmetry. Another interesting feature is the appearance of cascading

gauge theories, flowing in the IR. We do not discuss these issues here.

If the flavour groups U(N2k+1) are IR free in the electric description the same three

possibilities discussed above arise (see Plots 4, 5, and 6 of figure 3).

4. The plot 4 of figure 3 is characterized by

b2k+1 < 0 b̃2k+1 < b̃2i < 0 (5.7)

Here we do not need any other constraint except (5.2).

5. The plot 5 in figure 3 is

b2k+1 < 0 b̃2i < b̃2k+1 < 0 (5.8)

The requirement that the odd nodes are less coupled than the even ones at the

supersymmetry breaking scale give once again non trivial constraints, with the same

procedure outlined previously

Λ2k+1 ≫

(
Λ2i

µ

)eb2i−
eb2k+1

b2k+1

Λ2i ≫ Λ2i (5.9)

where now the strong coupling scale of the flavour groups in the electric description

is a Landau pole.

6. The last possibility (Plot 6 of figure 3)

b2k+1 < 0 b̃2k+1 > 0 (5.10)

lead to the same constraint (5.9). In the far infrared the strong dynamics of the

flavours node can lead to non perturbative phenomena, as in the case 3.

6. Meta-stable An

We work in the regime where the ratio
µ2

i

m
is larger than the strong scale of the even

nodes Λ2i. This requirement is satisfied if λi ≫ Λ2
2i in the electric theory. This allows us

to ignore in the dual superpotential (3.2) the presence of quadratic deformations in the

mesonic fields.

In this approximation the superpotential of the An quiver (3.2) reduces to n−1
2 copies

of A3 superpotentials. Hence a generic An diagram results decomposable in copies of A3

quivers, where every adjacent pair shares an odd node.
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1
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1
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4

µ E

1
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Λg

2
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f

µ E

1
g2

Λg Λ f

5

µ E

1
g2

Λg ΕΛ fµ

3

1
g2

Λg Λ f

6

µ E

Figure 3: The blue lines refer to flavour/odd groups which are UV free in the electric description,

while the red ones are IR free. The green lines refer to the gauge/even group couplings. We denote

with µ the supersymmetry breaking scale, and ΛG and ΛF are the strong coupling scales of the

gauge and the flavour groups, respectively.

For each A3 the even nodes provide the magnetic gauge groups, and each A3 has long

living metastable vacua, if the perturbative window is correct. It follows that the An quiver

theory, which is a set of metastable A3 quivers, possesses metastable vacua.

We still have to be sure of the perturbative regime. This means that we have to control

the gauge contributions from the odd nodes of the An diagram. We have to proceed as in

section 5, and study the beta coefficients of the groups. From (3.5) we can see that the

magnetic beta coefficients of the internal odd nodes involve the ranks of the next to next
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U(N) U(M) U(K) U(M) U(N) U(K) U(M) U(N)U(M)

Figure 4: An example with three ranks.

node b b̃

1, n (red) 3N − M N − 2K + M

2i (green) 3M − N − K 2K + 2N − 3M

4i − 1 (blue) 3K − 2M 2M − 4N − K i = 1, . . . , n−1
4

4j + 1 (violet) 3N − 2M 2M − 4K − N j = 1, . . . , n−5
4

Table 2: b and b̃ factors for the example of figure 4.

neighbor groups, i.e. they depend on five integer numbers. This means that in order to know

these beta coefficients it is enough to study the A5 consistent with (3.1). In the appendix C

we classify all the possible metastable A5 diagrams and we give the corresponding electric

and magnetic beta coefficients of the central flavour node. This classification describes the

RG behaviour of all the internal odd nodes of the An.

The running of the first and of the n-th node of the An quiver is still undefined and it

is discussed in the appendix C.

This provides a classification of metastable An quiver gauge theories with alternate

Seiberg dualities.

6.1 Example

We show now a simple example of metastable An diagram. We choose the even nodes in

the electric description to become strongly coupled at the same scale Λ2i. We require that

at such scale the flavours (odd nodes) are less coupled than the gauge ones. Moreover we

will show that we can also require that in the low energy description all the nodes are IR

free and also that the flavour groups (odd nodes) are less coupled than the gauge groups

(even nodes) at any scale below the Λ2i.

We study an An theory, where n = 4k + 1, with k integer. The chain is built as in

figure 4, with N < M < K. This range allows for metastable vacuum in each A3 piece as

showed previously. We perform alternate Seiberg dualities, working in the in the window

M + 1 < N + K <
3

2
M

Thanks to the simple choice for the ranks we have four values for the b coefficients of

the beta functions in the electric description, and four values for the coefficients b̃. They

are summarized in table 2.

– 12 –



J
H
E
P
1
0
(
2
0
0
7
)
0
1
7

µ Λ
2i

E

1
2g

Figure 5: The green line represents the running of the coupling of the even sites. The violet line

is related to the 4j + 1-th sites, the blue one to the 4i − 1-th sites and the red to the first and the

last nodes.

We require that in the magnetic description all the nodes are IR free. Moreover we

require the beta coefficients of the odd groups to be lower than the even group ones, i.e.

b̃odd < b̃2i. This restricts the window to

K > 2N 3N < 2M < 4N + K (6.1)

In this regime all the nodes in the electric description are UV free except the 4j + 1-th

ones. Seiberg duality is allowed on the even nodes, if we impose the following hierarchy of

scales

Λ1,Λn,Λ4i−1 ≪ Λ2i ≪ Λ4j+1 (6.2)

The running of the gauge couplings of the different nodes are depicted in figure 5.

At high energy the 4j + 1-th nodes are strongly coupled, while the other nodes are all

UV free. At the scale Λ2i the even nodes become strongly coupled and Seiberg dualities

take place. All the runnings of the couplings are changed by these dualities, and all the

coefficients of the beta functions b̃i become negative. Hence at energy scale lower than

Λ2i the theory is weakly coupled. Furthermore the beta coefficients of the odd nodes are

more negative than the even node ones. This guarantees that we can rely on perturbative

computations, treating the odd nodes as flavours.

7. Gauge mediation

The models analyzed in this work can admit mechanisms of gauge mediation. This means

that the breaking of supersymmetry can be transmitted to the Standard Model sector via

a gauge interaction. This idea has already appeared in the literature of metastable vacua

in An theories [8, 9].

Different realizations are possible here. A first one, of direct gauge mediation, identifies

the SM gauge group with a subgroup of a flavour group in the quiver [8] and leads to a

gaugino mass consistently with the bound of [10].

A second possibility [9] is to connect one of the extremal nodes of the An quiver

with a new gauge group, which represents the Standard Model gauge group. The arrows

connecting these nodes are associated with the messengers f and f̃ , which communicate
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Figure 6: Gauge mediation.

the breaking of supersymmetry to the standard model. Neglecting all the quartic terms,

except the term which couples the messengers f, f̃ with the last meson, it is possible to

show that also in this case gaugino masses arise at one loop.

In our models of metastable An quivers another possibility arises for gauge mediation.

It consists in substituting an even node with the Standard Model gauge group (figure 6).

The low energy description is constituted by two metastable An (A3 in this case) which

are connected through the SM sector. Both communicate the supersymmetry breaking to

the standard model. The superpotential leads to two copies of messengers fields related to

the two different hidden sectors

W =
(
m1 + θ2h1FM3

)
f1f̃1 +

(
m2 + θ2h2FM5

)
f2f̃2 (7.1)

A gaugino mass arises at one loop proportional to
(
h1

FM3

m1
+ h2

FM5

m2

)
.

8. Conclusions

We have studied metastability in models of An quiver gauge theories. The low energy

description in terms of macroscopic fields can be achieved via Seiberg dualities at chosen

nodes in the An diagram. This choice defines, to a certain extent, the models.

A strategy for building acceptable models unfolds from the request for a reliable per-

turbative analysis. This constrains the ranks of the gauge groups associated with the nodes

and their strong coupling scales. We chose to dualize alternate nodes and we fixed two

scales: a unique breaking scale µ and a common strong coupling scale ΛG for each dualized

node. The RG flows of the dualized and non dualized gauge groups must be such that at

energy scale higher than µ the gauge groups of the dualized nodes are more coupled than

the other ones.

The RG properties of the different nodes of an An quiver can be studied decomposing

it in A5 quivers and the decomposition of the An in A3 patches gives the structure of the

metastable vacuum. In this way we classify all the possible An quiver gauge theories which

show metastable vacua with the technique of alternating Seiberg dualities.

Finally we have discussed different patterns of gauge mediation.
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A. Goldstone bosons

The analysis we made in the A3 theories started from the limit |µ1| > |µ3|. Also the opposite

limit can give meta-stable vacua. To understand the differences among the various choices,

we have to study the classical masses acquired by the fields expanding them around their

vevs.

We study the case with ranks N1 < Ñ2 < N3. Since the flavor symmetry is U(N1) ×

U(N3), and not U(N1+N3), the linear terms of the mesons are different. We are still free to

choose the hierarchy between them. We here analyze the breaking of the global symmetries

taking |µ1| > |µ3|. Treating the gauge symmetry as a global one, and rearranging the quarks

in the form

〈q〉 =

(
q1,2

q3,2

)
=




µ11N1
0

0 µ31 eN2−N1

0 0


 〈q̃T 〉 =

(
q2,1

q2,3

)
=




µ11N1
0

0 µ31 eN2−N1

0 0


 (A.1)

we see that the global symmetry breaks as

U(N1) × U(Ñ2) × U(N3) −→ U(N1)D × U(Ñ2 − N1)D × U(N1 + N2 − Ñ2) (A.2)

This implies that the Goldstone bosons are Ñ2
2 + 2(Ñ2 − N1)(N1 + N3 − Ñ2). The first

Ñ2
2 Goldstone bosons come from the upper Ñ2 × Ñ2 block matrices in the quark fields,

exactly the same as in ISS. The second part is a bit different. In fact in ISS, with equal

masses, the Goldstone bosons which come from the lower (N1 +N3−Ñ2)×Ñ2 sector in the

quarks matrices, are 2Ñ2(N3 + N1 − Ñ2). In this case, since we started with lesser flavor

symmetry, there are 2N1(N3 + N1 − Ñ2) massless Goldstone bosons fewer than in ISS. We

have to control the other directions. From the scalar potential we have to compute the

masses that the fields acquire expanding around the vacuum. The relevant expansions for

the potentially tachyonic directions are the ones around the vevs of the quarks

q12 =
(

µ1 + φ1 φ2

)
q21 =

(
µ1 + φ̃1

φ̃2

)

q23 =

(
φ3 µ3 + φ4

φ5 φ6

)
q32 =

(
φ̃3 φ̃5

µ3 + φ̃4 φ̃6

)
(A.3)

The relevant terms of the scalar potential come from the F -terms of the mesons

V = |FM11
|2 + |FM13

|2 + |FM31
|2 + |FM33

|2 (A.4)
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If we study the mass terms of the fields φ5 and φ̃5 we note that they are not zero, since

µ1 6= µ3. In fact their mass matrix is1

(
φ5 φ̃

†
5

)(
µ2

1 −µ2
3

−µ2
3 µ2

1

)(
φ
†
5

φ̃5

)
(A.5)

with eigenvalues µ2
1 ± µ2

3. A minimum of the scalar potential without tachyonic directions

imposes a constraint on the masses, µ1 > µ3, consistent with the analysis of ISS.

We can ask now what happens if µ1 < µ3. The vacua we studied before are not true

vacua any longer, but they have tachyonic directions in the quark fields. The meta-stable

vacua are obtained choosing the vevs of q1,2 and q2,1 to be zero, and the vevs of the other

quarks to be

q3,2 = qT
2,3 =

(
µ31 eN2

0

)
(A.6)

The differences in the two cases are the value of the scalar potential and the pseudo-

moduli. In fact in the first limit Vvac = (N1 + N3 − Ñ2)|hµ2
3|

2, and in the second limit the

scalar potential is Vvac = (N3 − Ñ2)|hµ2
3|

2 + N1|hµ2
1|

2. Since we choose the masses to be

different, but of the same order, both cases have long lived meta-stable vacua. As far as

the pseudo-moduli are concerned, in the case analyzed during the paper, they come out

from a block of the M3,3 meson, and in this case they come out from the whole M1 meson

and from a diagonal block (N3 − Ñ2) × (N3 − Ñ2) of the M3,3 meson.

B. Hierarchy of scales

One of the main approximation we used to find metastable vacua has been to neglect the

fact that the odd nodes are gauge nodes. In order to treat them as flavours groups in the

region of interest, it is necessary that their gauge couplings are lower than the couplings of

the even nodes. We can treat the odd groups as flavour groups only if this relation holds.

In order to substantiate this idea we have to relate the electric scale of the flavour

group to the other scales of the theory. The latter ones are the strong coupling scale of

the gauge theories, Λ2i, and the supersymmetry breaking scale µ, which is the value of the

linear term in the dual version of the theory.

We must impose the groups related to the flavour/odd nodes to be less coupled than

the gauge/even groups in the magnetic region. A similar analysis was performed in [5].

There are six possibilities, shown in figure 3 in section 5. We have already discussed

what happens in all these different cases. We will now show how to derive the formulas (5.5)

and (5.9).

Let’s denote by f all the objects related to the flavour group, and by g all the objects

related to the gauge group. We have to distinguish four different cases, all with b̃f > b̃g.
2

1From now on we will consider all the mass terms as real.
2The opposite inequality do not require this analysis, since at low energy the flavours are always less

coupled than the gauge.
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In fact the flavours can be IR free or UV free in the electric description (i.e. above the scale

Λ2i) and also UV free or IR free in the magnetic description.

We start studying a single case, and then we will comment about the others. Let’s

study the case (2) in figure 3, where the flavours are UV free in the electric and IR free in

the magnetic description, i.e. bf > 0 and b̃f < 0.

We require that after Seiberg duality the gauge coupling gg is larger than the flavour

coupling gf . More precisely we require that this happens at the supersymmetry breaking

scale µ

1

g2
f (µ)

>
1

g2
g(µ)

⇒ b̃f log

(
Λ̃f

µ

)
< b̃g log

(
Λ̃g

µ

)
(B.1)

from which follows

Λ̃f >

(
Λ̃g

µ

)ebg−
ebf

ebf

Λ̃g > Λ̃g (B.2)

The scale matching relation coming from Seiberg duality

Λ
3ng−nf
g Λ̃

2nf−3ng
g = Λ̂

nf
g (B.3)

fixes Λg = Λ̃g, if we choose the intermediate scale to be Λ̂g = Λg.

For the flavour scale we observe that, at the scale Λg, where we perform Seiberg duality,

the coupling in the electric description for the odd node is the same that the coupling of

the magnetic description, and this implies

gf = g̃f →

(
Λf

Λg

)bf

=

(
Λ̃f

Λg

)ebf

(B.4)

We can now write (B.2) in term of the electric scales (Λf and Λg) using (B.4), and we

obtain

Λf < µ

ebf−
ebg

bf Λ

ebg−
ebf +bf

bf
g (B.5)

Since the exponent of µ is positive we have

b̃f − b̃g

bf

> 0 → Λf <

(
µ

Λg

)ebf−
ebg

bf

Λg ≪ Λg (B.6)

This imposes a stronger constraint on the scale of the flavour group Λf . In fact it is not

enough to choose it lower than the gauge strong coupling scale Λg. It is also constrained

by (B.6). Figure 7 explains what happens.

In the first picture the scale Λf is lower than Λg but not enough: at the breaking

scale it is not possible to neglect the contribution coming from g̃f . Instead, if we constrain

the scale Λf using (B.6), we obtain the runnings depicted in the second picture: here the

flavour groups are less coupled than the gauge groups at the supersymmetry breaking scale.

As explained above there are four different possibilities. The second possibility is that

the flavours are UV free both in the electric description and in the magnetic description,
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Figure 7: Hierarchy of scales.

with b̃f > 0. The analysis is the same as before, and we obtain the same inequality

as (B.6). However this situation requires a more careful analysis, since in the infrared the

gauge coupling associated to the flavour group develops a strong dynamics which has to

be taken under control.

For the other two possibilities, where bf < 0, one finds

Λf >

(
Λg

µ

)ebg−
ebf

bf

Λg ≫ Λg (B.7)

The general recipe we learn from this analysis can be summarized in three different

cases

• If the inequality b̃f < b̃g holds one has simply to choose Λf ≪ Λg or Λf ≫ Λg if

bf > 0 or bf < 0 respectively as in (5.1), (5.2).

• If b̃f > b̃g we can still distinguish two cases

– In the first case bf > 0, and we have to constraint Λf with (B.6).

– In the second case bf < 0, and we have to constraint Λf with (B.7).

C. A5 classification

We study A5 quiver gauge theories obtained gluing all the possible combinations of A3

which present metastable vacua, i.e. the one of section 4.

We analyze the beta function coefficients for these A5 quiver gauge theories, with gauge

group U(N1)×U(N2)×U(N3)×U(N4)×U(N5). The even nodes are in the IR free window

N2 < N1 + N3 <
3

2
N2 N4 < N3 + N5 <

3

2
N4 (C.1)

We write in table 3 the beta coefficients of the third node of the A5, specifying the range,

compatible with (C.1), when this node is UV free or IR free in the electric and in the mag-

netic descriptions, respectively. The table classifies the possible A5 quiver gauge theories

which present alternate Seiberg dualities and which have metastable vacua.
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As explained in section 6 we can obtain an An quiver gauge theory by gluing the A3

patches. For the renormalization group, the internal flavour nodes of the An chain behave

as the third node of the A5 patches.

The table does not say anything about the external nodes of the An. In the electric

theory one has b1 = 3N1 − N2 and bn = 3Nn − Nn−1; after duality, in the low energy

description we have b̃1 = N1 +N2 −N3, and b̃n = Nn +Nn−1 −2Nn−2. The possible values

for b̃1 and b̃n have to be studied separately.
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Ranks of A5
Further

condition(I)

Further

condition(II)

electric

b − factor

magnetic

b − factor

N1 < N2 ≤ N3 < N4 ≤ N5

N2 + N4 < 3N3

3N3 < N2 + N4

b3 > 0

b3 < 0

b̃3 < 0

b̃3 < 0

N1 < N2 > N3 < N4 ≤ N5 b3 < 0 b̃3 < 0

N1 ≥ N2 > N3 < N4 ≤ N5 b3 < 0 b̃3 < 0

N1 < N2 > N3 < N4 > N5

N3 < N1 + N5

N3 > N1 + N5

N2 + N4 < 3N3

3N3 < N2 + N4

N2 + N4 < N3 + 2N1 + 2N5

N3 + 2N1 + 2N5 < N2 + N4

b3 > 0

b3 < 0

b3 > 0

b3 > 0

b̃3 < 0

b̃3 < 0

b̃3 < 0

b̃3 > 0

N1 < N2 ≤ N3 ≥ N4 > N5

N2 + N4 < N3 + 2N1 + 2N5

N3 + 2N1 + 2N5 < N2 + N4

b3 > 0

b3 > 0

b̃3 < 0

b̃3 > 0

N1 < N2 ≤ N3 < N4 > N5

N3 < N1 + N5

N3 > N1 + N5

N2 + N4 < 3N3

3N3 < N2 + N4

N2 + N4 < N3 + 2N1 + 2N5

N3 + 2N1 + 2N5 < N2 + N4

b3 > 0

b3 < 0

b3 > 0

b3 > 0

b̃3 < 0

b̃3 < 0

b̃3 < 0

b̃3 > 0

Table 3: In the first column we report all the possible inequalities among the A5 rank numbers consistent with (C.1). Moving from left to right

the further condition fix the signs of b3, b̃3.
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